Nanosensors for early stage detection of Circulating Tumour Cell biomarkers in Prostate Cancer Diagnosis: : A Systematic Review of Published Evidence

S. Basu ¹, J.K. Tan ², S. Adeleke ³, S. Boussios ⁴, A. Ghose ⁵

IUC24425-82

(1) University College London Cancer Institute, London - United Kingdom, (2) University of Manchester, Manchester - United Kingdom, (3) Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation
Trust, London - United Kingdom, (4) Medical Oncology, University Hospital of Ioannina, Ioannina - Greece, (5) Barts Cancer Centre, Barts Health NHS Trust, London - United Kingdom

Background

- Prostate Cancer: Most common cause of cancerassociated mortality in men.
- Stage IV Metastatic Prostate Cancer: 5-year survival rate of 27%.
- Tissue-specific and cancer-specific biomarkers: PSA.

Current Diagnostic Flow

Nanoparticals

Gold (AuNPs)

Quantum

Dots (QD)

Magnetic (MNP's)

Graphene

Liquid biopsies: Circulating Tumour Cells (CTC's) Prognostic biomarker for metastatic assessment

Current **Challenges** with PCa Diagnosis

Need for Modern Technology

- Non- invasive
- Patient-friendly
- High sensitivity and specificity
- Safe

Application for Nanosensors in CTC Diagnosis

Methodology

Systematic Search: Filters: Last 10 years (2014-2024), Language: English, Titles and Abstracts, Relevant Keywords

Hypothesis

Nanosensors will **enhance** the detection of CTC biomarkers in prostate cancer, leading to increased early diagnosis and metastatic risk assessment **compared** to existing technologies

Results

Nano sensor	Biomarker	Detection Method	Feature	LOD (ng/mL)	Efficacy %
Standard PSA (ELISA) test	PSA	Blood Serum	Standard Assay	0.1	70-90
Gold (AuNPs)	PSA	Serum of healthy prostate	Linear range: 0- 0.8 ug/L	0.02	Not reported (-)
Quantum Dot	f-PSA and c-PSA	Two human serum	Assay time: 60 minutes; detects f-PSA and c-PSA	0.009	86, 70-80
Magnetic (MNP's)	PSA	Human Plasma	Linear range 0.001-1 ug/L	0.001 (1 nG/L)	>94, >75, 90
Graphene	PSA	Blood	Not reported (-)	0.2 (total PSA) 0.07 (free PSA)	73
Carbon Nanotube	miR-21	Human serum	miR-21 (0.01 fmol/L to 1 μmol/L)	0.01 fmol/L Not applicable for PSA	>40

Lower LOD aligned with higher sensitivity to clinically relevant concentrations

Magnetic nanoparticles showed the strongest performance; LOD = 0.001 ng/mL

Conclusion

Nanosensor	LOD (ng/mL)	Interpretation	Advantages	Disadvantages
Gold (AuNPs)	0.02	Moderate sensitivity	Simple synthesis	Signal to noise ratio
			Ease of surface	High Cost
			Unique spectral	Toxicity
			properties	Poor Stability and reproducibility
			Biocompatibility	reproducibility
Quantum Dot	0.009	High sensitivity, but less compared	Inherent fluorescence	Cytotoxicity
		to MNPs.	Controllable size	Non- Biodegradable
		Detects both f-PSA and c-PSA within	Long fluorescence lifetime	Photochemical disturbances
		short assay time	Tunable emission wavelengths	Synthesis complexity
Magnetic (MNP's)	0.001 (1 nG/L)	Most sensitive amongst all.	Ease of surface modification	Toxicity
(Mini 3)		Detects extremely low concentrations of PSA.	Controllable size	Non-specific binding to WBC's
			Superparamagnetic	Aggregation in biological fluid
			High stability of surface chemistry	Rapid clearance by
			Biocompatibility	immune system with no surface modification.
Graphene	0.2 (total PSA)	Good sensitivity	High SA:Vol ratio	Scalability
	0.07 (free PSA)		Ease of surface	Signal-to-Noise Ratio
			Miniaturisation	Poor Stability and Durability
			Wide detection range	High Cost
			Biocompatibility	

Future Work

- Integrating biomaterials
- · Reducing cytotoxicity
- Surface Modification
- Enhanced sensitivity
- Processing and durability

References

